نوع مقاله : پژوهشی

نویسندگان

دانشگاه تربیت مدرس

چکیده

منطق تک‌نرم UL یک منطق فازی، زیرساختاری و نیمه‌ربطی است. سیستم گنتزن UL از حذف قواعد انقباض و تضعیف از سیستم گنتزن منطق فازی گودل بدست می‌آید. UL فاقد «طرد شق ثالث»، «پارادوکس مثبت» و «پارادوکس منفی» است. تابع ارزش تک‌نرم تضعیفی ربطی از تابع t-نرم است. در این مقاله منطق جدید ULΔ را معرفی می‌کنیم. ULΔ با افزودن اپراتور وجهی Δ به UL بدست می‌آید. ULΔ که بسطی از منطق کلاسیک است، یک منطق موجهات نرمال نیمه‌خطی است. یعنی نسبت به یک جبر مرتب خطی به طور قوی صحیح و تمام است. ULΔ با قضیه‌ی (p→q)∨Δ(q→p) از دیگر سیستم‌های استاندارد منطق موجهات متمایز می‌گردد. Δφ شهوداً تعبیر می‌شود که «صادق است که φ» یا به عبارت دقیق‌تر «به طور کلاسیک صادق است که φ». در این مقاله منطق نیمه‌کلاسیک ULΔ را با چهار رویکرد اصل موضوعی، حساب ابررشته‌ها، معناشناسی جبری و معناشناسی استاندارد معرفی می‌کنیم. فراقضیه‌هایی که بررسی می‌کنیم عبارت‌اند از: استنتاج دلتا، صحت قوی، تمامیت استاندارد قوی و تعریف‌پذیری منطق کلاسیک.

کلیدواژه‌ها

عنوان مقاله [English]

Propositional Uninorm Fuzzy Logic with Truth Connective

نویسندگان [English]

  • Amer Amikhteh
  • Lotfollah Nabavi

Tarbiat Modares University

چکیده [English]

The uninorm logic UL is a fuzzy, substructural and semi-relevant logic. The Gentzen-style system for UL is obtained by removing the contraction rules and weakening from the Gentzen-style system of Godel fuzzy logic. The UL lacks "excluded middle", "positive paradox" and "negative paradox". The truth function of uninorm is a relevance weakening of the t-norm function. In this article, we introduce the new logic ULΔ. ULΔ is obtained by adding Δ to UL. ULΔ, an expansion of classical logic, is a normal semilinear modal logic; i.e. it is strongly sound and complete w.r.t. a linearly ordered algebra. And with the theorem of (p→q)∨Δ(q→p) it is distinguished from other standard systems of modal logic. Δφ is intuitively interpreted as "true that φ" or more precisely "classically true that φ". In this paper, we introduce the semi-classical logic ULΔ with four approaches, axiomatizations, hypersequent calculi, algebraic semantics and standard semantics. metatheorems we are considering include Delta deduction, strong soundness, strong standard completeness and definability of classical logic.

کلیدواژه‌ها [English]

  • "Fuzzy Logic"
  • "Uninorm Logic"
  • "Truth Connective"
  • "Semilinear Modal Logic"
  • "Standard Completeness"
اردشیر، م. (1391)، منطق ریاضی، تهران: هرمس.
 
Baaz, M. (1996), “Infinite-valued Gödel Logics with 0-1-projections and Relativizations”, in: Gödel’96: Logical Foundations of Mathematics, Computer Science and Physics---Kurt Gödel’s Pegacy, Brno, Czech Republic, August 1996, Proceedings, vol. 6, Association for Symbolic Logic.
Cintula, P., R. Horčík, and C. Noguera (2015), “The Quest for the Basic Fuzzy Logic”, in: F. Montagna (ed.), Petr Hájek on Mathematical Fuzzy Logic, Switzerland: Springer International Publishing. <https://doi.org/10.1007/978-3-319-06233-4_12>
Esteva, F. and L. Godo (2001), “Monoidal T-norm Based Logic Towards a Logic for Left-Continuous T-norms”, Fuzzy Sets and Systems, vol. 124, no. 3. <https://doi.org/10.1016/S0165-0114(01)00098-7>
Gabbay, D. and G. Metcalfe (2007), “Fuzzy Logics Based on [0, 1)-continuous Uninorms”, Archive for Mathematical Logic, vol. 46, no. 5-6.
Galatos, N. and H. Ono (2006), “Algebraization, Parametrized Local Deduction Theorem and Interpolation for Substructural Logics over FL”, Studia Logica, vol. 83, no. 1–3. <https://doi.org/10.1007/s11225-006-8305-5>.
Hájek, P. (1998), Metamathematics of Fuzzy Logic (Vol. 4), Springer Netherlands. <https://doi.org/10.1007/978-94-011-5300-3
Metcalfe, G. and F. Montagna (2007), “Substructural Fuzzy Logics”, The Journal of Symbolic Logic, vol. 72, no. 3.< https://doi.org/10.2178/jsl/1191333844>.
Metcalfe, G. N. Olivetti, and D. Gabbay (2009), Proof Theory for Fuzzy Logics, vol. 36, Netherlands: Springer. <https://doi.org/10.1007/978-1-4020-9409-5>.
Montagna, F. (2012), “Δ-core Fuzzy Logics with Propositional Quantifiers, Quantifier Elimination, and Uniform Craig Interpolation”, Studia Logica, vol. 100, no. 1–2. <https://doi.org/10.1007/s11225-012-9379-x>.
Wang, S.-M., B.-S. Wang, and D.-W. Pei (2005), “A Fuzzy Logic for an Ordinal Sum t-norm”, Fuzzy Sets and Systems,  vol. 149, no. 2. <https://doi.org/10.1016/j.fss.2004.01.005>.
Wang, S. (2007), “A Fuzzy Logic for the Revised Drastic Product t-norm”, Soft Computing, vol. 11, no. 6. < https://doi.org/10.1007/s00500-005-0024-8>.
Yager, R. R. and A. Rybalov (1996), “Uninorm Aggregation Operators”, Fuzzy Sets and Systems, vol. 80, n0. 1. <https://doi.org/https://doi.org/10.1016/0165-0114(95)00133-6>.
Yang, E. (2012), “Weakening-free Fuzzy Logics with the Connective Δ”, Soft Computing, vol. 16, no. 12. <https://doi.org/10.1007/s00500-012-0879-4>.