- Ben-Yaacov I. (2014), Model theoretic stability and definability of types, after A. Grothendiek, Bulletin of Symbolic Logic, 20, pp 491-496.
- Bourgain J., Fremlin D. H., and Talagrand M. (1978). Pointwise compact sets of baire-measurable functions. American Journal of Mathematics, 100(4): pp. 845-886.
- Gaifman H. (1976), Models and types of Peano's arithmetic. Ann. Math. Logic, 9(3):223-306.
- Grothendieck A. (1952), Crit`eres de compacit´e dans les espaces fonctionnels generaux, American Journal of Mathematics 74, 168-186.
- Iovino I. (1999), Stable models and reexive Banach spaces. J. Symbolic Logic, 64(4):1595-1600.
- Khanaki K. (2015), Stability, NIP, and NSOP; Model Theoretic Properties of Formulas via Topological Properties of Function Spaces, , Mathematical Logic Quarterly, submitted.
- Khanaki K. and Pillay A. (2018), Remarks on NIP in a model, Mathematical Logic Quarterly, to appear.
- Krivine, J.-L., and Maurey B. (1981), Espaces de Banach stables. Israel J. Math., 39(4):273-295.
- Pillay A, (1982), Dimension theory and homogeneity for elementary extensions of a model, J. Symbolic Logic, vol 47, 147-160.
- Pillay A. (2016), Generic stability and Grothendieck, South American Journal of Logic, Vol. 2, n. 2, p. 1-6.
- Poizat B. (1981), Theories instables. J. Symbolic Logic, 46(3):513–522.
- Shelah S. (1971), Stability, the f.c.p., and superstability; model theoretic properties of formulas in first order theory, Annals of Mathematical Logic, vol. 3, no. 3, pp. 271-362.
- Simon P. (2015), Rosenthal compacta and NIP formulas, Fund. Math. vol. 231, 81-92.