Document Type : Review

Author

Associate Professor, Department of Mathematics, Shahid Beheshti University

Abstract

We first look at some controversial issues in mathematical logic. These issues are often confused by non-specialists. The main topics that we will address in this regard are: Tarski's definition of truth, Tarski's theorem on undefinability of truth, Gödel's completeness theorem and Gödel's incompleteness theorems, and first and second-order logic. Next, we will introduce some non-classical logics and their place in philosophical logic as well as logic in computer science. In addition, we discuss some philosophical issues related to logic. Among the issues we discuss are the definition of logic, the difference between logic and logical system, and the challenge of monism versus pluralism in the choice of logic. By separating logic from logical systems, we will defend the view that mathematical logic, as part of mathematics, should only be committed to the standards of mathematics. In this regard, any non-classical logic system that meets these standards will have legitimacy.

Keywords

خاتمی م.، پورمهدیان م. (1398). منطق پیوسته، منطق‌پژوهی، سال 10، شماره 1، صص. 89-120.
علایی‌نژاد ح.، حاج‌حسینی م. (1398). بررسی انتقادی کثرت‌گرایی غایت‌محور در مورد منطق، منطق پژوهی، سال 10، شمارۀ 1، صص. 195-211.
کلانتری، ع.، کرباسی‌زاده، ا. (1398). بررسی کثرت‌گرایی منطقی با تکیه بر آرا بیل و رستال، حکمت و فلسفه، سال 15، شمارۀ 58، صص. 728.
 
Beall, J., Restall, G. (2006). Logical Pluralism, Oxford: Oxford University Press.
 
Carnap, R. (1963). Intellectual Autobiography in The philosophy of Rudolf Carnap, Paul Arthur Schilpp (ed.), Open Court Publishing Company.
 
Carnap, R. (1934). Logical Syntax of Language, A. Smeaton (translator), Routledge & Keagan Paul, London, 1937.
 
Colyvan, M. (2012). An Introduction to the Philosophy of Mathematics, Cambridge: Cambridge University Press.
 
Enderton, H. (2001). A Mathematical Introduction to Logic, Second Edition, Academic Press.
 
Field, H. (2009). Pluralism in Logic, The Reviews of Symbolic Logic, vol. 6, no. 2 , pp. 345-359.
 
Hajek, P., Pudlak, P. (1993). Metamathematics of First-Order Arithmetic, Berlin and Heidelberg: Springer-Verlag.
 
Halbach, V., Leigh G. E.  (2020), Axiomatic Theories of Truth, The Stanford Encyclopedia of Philosophy, Edward N. Zalta (ed.).
 
Halpern, J., Harper R., Immerman N., Kolaitis P. (2001). On the Unusual Effectiveness if Logic in Computer Science, The Bulletin of Symbolic Logic, Vol. 7. No. 2, pp. 213-236.
 
Halvorson, H. (2019). The Logic in Philosophy of Science. Cambridge: Cambridge University Press.
 
Homotopy Type Theory: The Univalent Foundations Program, Institute for Advanced Study (IAS), Princeton, NJ, 2013.
 
Hrushovski, E. (1996). The Modelling-Lang Conjecture For Function Fields, Journal of American Mathematical Society, vol. 9, no. 3, pp. 667-690.
 
Maddy, P. (2012). The Philosophy of Logic, Bulletin of Symbolic Logic, vol. 18, no. 4, pp. 481-504.
 
Maddy, P. (2014). The Logical Must: Wittgenstein on Logic, Oxford: Oxford University Press.
 
Priest, G. (2017). What is the Specificity of Classical Mathematics?, Thought: A Journal of Philosophy, vol.  6, Issue 2.
 
Putnam, H. (2010). Philosophy of Logic, Routledge.
 
Trolestra A. S., van Dalen D. (1988), Constructivism in Mathematics: An Introduction, vol. 1 and 2, North Holland.