نوع مقاله : پژوهشی

نویسنده

گروه فلسفه، دانشکده ادبیات و علوم انسانی، دانشگاه اصفهان، اصفهان، ایران

چکیده

در این مقاله قصد داریم تأثیر افزودن نقاط ثابت به منطق های توجیه را بررسی کنیم. به ویژه به مطالعه منطق مسور اثبات ها، که توسط فیتینگ معرفی شده است و گسترشی از منطق اثبات های آرتموف به یک منطق محمول ها می باشد، می پردازیم. ما گسترش های نقطه ثابتی از منطق مسور اثبات ها را ارایه می دهیم. این گسترش ها توسط افزودن عملگرهای نقطه ثابت (یا عملگرهای قطری)، که توسط اسمورینسکی معرفی شده است، به زبان منطق مسور اثبات ها به دست می آیند. سپس پارادوکس دانا و نسخه های خودارجاعی از پارادوکس امتحان غیرمنتظره را در این گسترش های نقطه ثابت صورت بندی می کنیم. با تفسیر یک جمله غافلگیرانه به عنوان گزاره ای که هیچ توجیهی برای آن وجود ندارد، ما در منطق مسور اثبات ها، راه حلی برای نسخه خود ارجاع پارادوکس امتحان غیرمنتظره ارایه می دهیم. ما در واقع نشان می دهیم که یکی از اصول منطق مسور اثبات ها (که فیتینگ آن را فرمول بارکان یکنواخت نامیده است) می تواند عامل ایجاد تناقض در این پارادوکس ها باشد، و بنابراین با رد این اصل می توانیم از استنتاج تناقض در پارادوکس های ذکر شده در مقاله جلوگیری کنیم. همچنین با معرفی مدل های مکرتیچف برای این گسترش های نقطه ثابتِ منطق مسور اثبات ها نشان می دهیم که این گسترش ها (بدون فرمول بارکان یکنواخت) سازگار هستند.

کلیدواژه‌ها

عنوان مقاله [English]

A Note on Fixed Points in Quantified Logic of Proofs and the Surprise Test Paradox

نویسنده [English]

  • Meghdad Ghari

Department of Philosophy, Faculty of Literature and Humanities, University of Isfahan, Isfahan, Iran

چکیده [English]

In this note, we study the effect of adding fixed points to justification logics. By making use of the fixed point operators (or diagonal operators) introduced by Smorynski in his Diagonalization Operator Logic, we introduce fixed point extensions of Fitting's quantified logic of proofs QLP. We then formalize the Knower Paradox and various self-reference versions of the Surprise Test Paradox in these fixed point extensions of QLP. By interpreting a surprise statement as a statement for which there is no justification or evidence, we propose a solution to the self-reference version of the Surprise Test paradox. We show that one of the axioms of QLP (the Uniform Barcan Formula) could be the reason for producing contradiction in these paradoxes, and thus by rejecting this axiom we can avoid contradiction in the aforementioned paradoxes. By introducing Mkrtychev models for the fixed point extensions of QLP, we further show that these fixed point extensions (without the Uniform Barcan Formula) are consistent.

کلیدواژه‌ها [English]

  • Justification logic
  • Fixed point
  • Quantified logic of proofs
  • Surprise Test Paradox
  • Knower Paradox
  1. Artemov, S.N.: Operational modal logic. (1995).
  2. Artemov, S.N.: Explicit Provability and Constructive Semantics. Bull. Symb. Log. 7, 1–36 (2001).
  3. Fitting, M.: A Quantified Logic of Evidence. Electron. Notes Theor. Comput. Sci. 143, 59–71 (2006). https://doi.org/10.1016/j.entcs.2005.04.038.
  4. Fitting, M.: A quantified logic of evidence. Ann. Pure Appl. Log. 152, 67–83 (2008). https://doi.org/10.1016/j.apal.2007.11.003.
  5. Smoryński, C.: Self-Reference and Modal Logic. Springer New York, New York, NY (1985). https://doi.org/10.1007/978-1-4613-8601-8.
  6. O’Connor, D.J.: Pragmatic paradoxes. Mind. 57, 358–359 (1948). https://doi.org/10.1093/mind/lvii.227.358.
  7. Weiss, P.: The Prediction Paradox. Mind. 61, 265–269 (1952). https://doi.org/10.1093/mind/lxi.242.265.
  8. Sorensen, R.: Epistemic Paradoxes, https://plato.stanford.edu/entries/epistemic-paradoxes/, last accessed 2021/04/18.
  9. Quine, W. V.: ON A So-Called Paradox. Mind. 62, 65–67 (1953). https://doi.org/10.1093/mind/lxii.245.65.
  10. Kripke, S.A.: On Two Paradoxes of Knowledge. In: Philosophical Troubles: Collected Papers. Oxford University Press (2011). https://doi.org/10.1093/acprof:oso/9780199730155.003.0002.
  11. Chow, T.Y.: The Surprise Examination or Unexpected Hanging Paradox. Am. Math. Mon. 105, 41–51 (1998). https://doi.org/10.1080/00029890.1998.12004847.
  12. Cheung, L.K.C.: On Two Versions of “the Surprise Examination Paradox.” Philos. (United States). 41, 159–170 (2013). https://doi.org/10.1007/s11406-013-9416-7.
  13. Gerbrandy, J.: The surprise examination in dynamic epistemic logic. Synthese. 155, 21–33 (2007). https://doi.org/10.1007/s11229-005-2211-7.
  14. Shaw, R.: The paradox of the unexpected examination. Mind. 67, 382–384 (1958). https://doi.org/10.1093/mind/lxvii.267.382.
  15. Fitch, F.B.: A Goedelized Formulation of the Prediction Paradox. Am. Philos. Q. 1, (1964).
  16. Kritchman, S., Raz, R.: The surprise examination paradox and the second incompleteness theorem. Not. AMS. 57, 1454–1458 (2010).
  17. Ardeshir, M., Ramezanian, R.: A solution to the surprise exam paradox in constructive mathematics. Rev. Symb. Log. 5, 679–686 (2012). https://doi.org/10.1017/S1755020312000160.
  18. Boolos, G.: The logic of provability. Cambridge university press (1995).
  19. Montague, R.: Syntactical Treatment of Modality with Corrollaries on Reflexion Principles and Finite Axiomatizability. Acta Filosophica Fenn. 16, 153–165 (1963).
  20. Égré, P.: The Knower Paradox in the Light of Provability Interpretations of Modal Logic. J. Logic, Lang. Inf. 14, 13–48 (2005).
  21. Kaplan, D., Montague, R.: A paradox regained. Notre Dame J. Form. Log. 1, 79–90 (1960).
  22. Ghari, M.: A Note on Fixed Points in Justification Logics and the Surprise Test Paradox. ArXiv e-prints. (2014).
  23. Mkrtychev, A.: Models for the Logic of Proofs. In: Adian, S. and Nerode, A. (eds.) Logical Foundations of Computer Science, 4th International Symposium, LFCS’97, Yaroslavl, Russia, July 6--12, 1997, Proceedings. pp. 266–275. Springer (1997). https://doi.org/10.1007/3-540-63045-7_27.
  24. Arló-Costa, H., Kishida, K.: Three Proofs and the Knower in the Quantified Logic of Proofs. In: Online Proceedings of Sixth Annual Formal Epistemology Workshop (FEW 2009). , Carnegie Mellon University, Pittsburg, PA, USA (2009).
  25. Dean, W., Kurokawa, H.: The Paradox of the Knower revisited. Ann. Pure Appl. Log. 165, 199–224 (2014). https://doi.org/10.1016/j.apal.2013.07.010.
  26. Dean, W.: Montague’s paradox, informal provability, and explicit modal logic. Notre Dame J. Form. Log. 55, 157–196 (2014). https://doi.org/10.1215/00294527-2420636.
  27. Fagin, R., Y. Halpern, J., Moses, Y., Y. Vardi, M.: Reasoning about Knowledge. MIT Press (1995).
  28. Binkley, R.: The Surprise Examination in Modal Logic. J. Philos. 65, 127–136 (1968). https://doi.org/10.2307/2024556.