نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری گروه فلسفه دانشگاه تربیت مدرس.

2 دانشیار گروه فلسفه دانشگاه تربیت مدرس(نویسنده مسئول)

3 استاد گروه فلسفه، دانشگاه تربیت مدرس

10.30465/lsj.2021.37940.1374

چکیده

وحدت در گزاره‌های رمزانشی

چکیده: درباره‌ی گزاره‌ها (ی متداول)، خانواده‌ای از مسئله‌ها وجود دارد که ذیل عنوان مسئله‌ی وحدت گزاره مطرح‌ می‌شوند و از این می‌پرسند که چگونه یک گزاره، بازنمایاننده است؛ چگونه معنایی منسجم و واحد، فراتر از مجموع معانی دخیل در آن دارد و چگونه برخلاف اجزائش، قابل تصدیق و تکذیب است. در این مقاله، مسئله‌(ها)ی مشابهی درباره‌ی گزاره‌های رمزانشی –یعنی گزاره‌های حاوی حمل رمزانشی در برابر حمل متداول- مطرح خواهم کرد. فرض وجود این نوع حمل، ما را قادر می‌سازد تا عبارت‌هایی از این قبیل که "کوه طلا، کوه است" را بر خلاف تحلیل‌های کلاسیک، نه تنها معنادار بشماریم بلکه تصدیق کنیم. نشان خواهم داد که حمل متداول قابل فروکاست به رمزانش است و بر این مبنا راهکار منسجمی برای پاسخ به مسئله‌ی محوریِ وحدت گزاره پیش می‌کشم. پذیرش این راهکار، متضمن صورت‌بندی جدیدی از مسئله‌ی وحدت خواهد بود.


کلیدواژه‌ها

عنوان مقاله [English]

The Unity of The Encoding Proposition

نویسندگان [English]

  • Hassan Hamtaii 1
  • Seyyed Mohammad Ali Hodjati 2
  • Lotfollah Nabavi 3

1 Department of Philosophy, Tarbiat Modares University, Tehran, Iran

2 Department of Philosophy.Tarbiat Modares University

3 Department of Philosophy, Tarbiat Modares University, Tehran, Iran

چکیده [English]

The Unity of the Encoding Proposition

Abstract: There is a family of problems under the rubric of “the unity of the proposition”. They ask how is it that (ordinary) propositions are unit wholes over and above their constituting parts, how is it that they are representational and have truth values. In this paper, we propose the very same concern regarding the Meinongian encoding propositions; those propositions that contain the encoding mode of predication rather than the ordinary exemplificational predication. Embracing such a dual mode of predication lets us interpret propositions such as “the round square is round” not only as meaningful but also as true propositions. We demonstrate how to reduce exemplification to encoding. This should dissolve the classical problem of the propositional unity, yet providing a rather new formulation of it.

کلیدواژه‌ها [English]

  • unity of proposition
  • predication
  • encoding
  • exemplification
  • Zalta
  • Meinong
Candlish, Stewart (2007). The Russell/Bradley Dispute and its Significance for Twentieth Century Philosophy: palgrave-Macmillan.
Castañeda, H.-N. (1974). “Thinking and the structure of the world”: philosophia, 4(1), 3–40.
Castañeda, H.-N. (1975). “Identity and sameness. Philosophia”, 5(1-2), 121–150.
Chisholm, R. M. (1982). “Converse Intentional Properties”, The Journal of Philosophy, 79(10), 537-545.
Clark, R. (1978). “Not Every Object of Thought has Being: A Paradox in Naive Predication Theory”, Noûs, 12(2), 181.
Cocchiarella NB (2007) Formal ontology and conceptual realism. Synthese library, vol. 339. Springer, Dordrecht
Cocchiarella, N. B. (2013). “Representing Intentional Objects in Conceptual Realism”, HUMANA.MENTE Journal of Philosophical Studies, 6(25), 1-24. Retrieved from http://www.humanamente.eu/index.php/HM/article/view/132
Davidson, D. (2005). Truth and Predication. Cambridge: Harvard University Press, 2005
Duzí, M. (2017), “If structured propositions are logical procedures then how are procedures individuated?”, Synthese 196 (2017): 1249-1283.
Eklund, M. (2019). “Regress, unity, facts, and propositions”, Synthese, 196 (4):1225-1247.
Fine, K. (1984). “Critical Review of Parsons'' "Non-Existent Objects"”: philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, 45(1), 95-142.
Jacquette, D. (1997). “Reflections on mally’s heresy”, Axiomathes 8, 163–180
Jacquette, D. (1989). “Mally''s heresy and the logic of meinong''s object theory”, History and Philosophy of Logic, 10:1, 1-14,
Jespersen, B. (2019). “Anatomy of a proposition”, Synthese 196 (4):1285-1324.
King, J. (2013). “Propositional unity: What''s the problem, who has it and who solves it?”: philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, 165(1), 71-93.
Landini, G. (1990). “How to Russell another Meinongian”, Grazer Philosophische Studien 37 (1):93-122.
Lewis, F. (1991). Substance and Predication in Aristotle, Cambridge: Cambridge University Press.
Lowe, E. J. (2005). The Four-Category Ontology: A Metaphysical Foundation for Natural Science. Clarendon Press.
MacBride, F. (2005). “The particular–universal distinction: A dogma of metaphysics?”, Mind 114 (455):565-614.
Matthews, G. B. 1982. “Accidental Unities”, In Language and Logos, edited by Malcolm Schofield and Martha Nussbaum, 223–40. Cambridge: Cambridge University Press.
Ostertag, G. (2019). “Structured propositions and the logical form of predication”, Synthese 196 (4):1475-1499.
Parsons, T. (1980). Nonexistent Objects. New Haven: Yale University Press
Paśniczek, J. (1993). “The simplest Meinongian logic”, Logique Et Analyse 36:329-342.
Paśniczek, J. (1998). The Logic of Intentional Objects. A Meinongian Version of Classical Logic, Dordrecht: Kluwer.
Paśniczek, J. (1999). “On bracketing names and quantifiers in first-order logic”, History and Philosophy of Logic 20 (3-4):239-304.
Rapaport, W. (1978). “Meinongian Theories and a Russellian Paradox”, Noûs, 12(2), 153-180.
Russell, B. (2010) [First published 1903]. Principles of Mathematics. Routledge
Sainsbury, M. (1996). “How can some thing say something?” In R. Monk, A. Palmer (Eds.), Bertrand Russell and the origins of analytic philosophy (pp. 137–153). Bristol: Thoemmes. Reprinted in Departing From Frege, Oxford: Routledge (2002).
Soames, S. (2010). What is Meaning?. Princeton University Press.
Zalta, E. N. (1983). Abstract Objects: An Introduction to Axiomatic Metaphysics. D. Reidel.
Zalta, E. N. (1988). Intensional Logic and the Metaphysics of Intentionality, Cambridge, Mass.: MIT Press.
Zalta, E. N. (1992). “On Mally''s alleged heresy: A reply”, History and Philosophy of Logic 13 (1):59-68.
Zalta, E. N. (1997). “The modal object calculus and its interpretation”. In M. de Rijke (ed.), Advances in Intensional Logic. Kluwer Academic Publishers. pp. 249--279.