نوع مقاله : کوتاه

نویسنده

دانشیار عضو هیئت علمی، گروه ریاضی دانشگاه شهید بهشتی

10.30465/lsj.2023.45985.1444

چکیده

ابتدا، در پرتو آراء ففرمن، به بررسی دوگانۀ گودل می‌پردازیم مبنی بر اینکه یا توانایی‌های ذهن انسان از هر ماشین متناهی فراتر است، و یا معادلات ریاضی از نوع دیوفانتی وجود دارند که به طور مطلق حل‌ناپذیر هستند. سپس برهان پاتنم را بررسی می‌کنیم مبنی بر این که اگر توانایی علمی ذهن انسان را بتوان توسط یک ماشین تورینگ با توانایی تهیۀ سیاهه‌ای از نتایج علمی شبیه‌سازی کرد، این ماشین جمله‌ای که این توانایی را بیان می‌کند را به عنوان خروجی ارائه نخواهد کرد. در تلاش برای فهم بهتر این برهان، آن را در زبان منطق وجهی بازسازی می‌کنیم. در ادامه، به امکان رایانه‌های خارق‌العاده برای انجام تعدادی بی‌شمار عمل پایه‌ای محاسباتی در زمان متناهی می‌پردازیم. این امکانی است که اخیراً بر اساس نظریه‌های جدید فیزیکی مطرح شده است. استدلال می‌کنیم با فرض تحقق چنین امکانی، حساب مرتبۀ اول متعین خواهد بود، به این معنی که صادق یا کاذب بودن هر جملۀ حسابی توضیح‌پذیر خواهد بود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Absolutely unsolvable problems and supertask computers

نویسنده [English]

  • Morteza Moniri

Associate Professor of Mathematics Department of Shahid Beheshti University

چکیده [English]

First, in the light of Feferman’s views, we will examine Gödel’s dichotomy that either the capabilities of the human mind are beyond any finite machine, or there are Diophantine-type mathematical equations that are absolutely unsolvable. Then we examine Putnam’s argument that if scientific competence of the mind can be simulated by a Turing machine with the ability to prepare a list of scientific propositions, this machine will not print out the sentence that expresses this ability. In an effort to better understand this proof, we restate it in the language of modal logic. Then, we discuss the possibility of supertask computations to perform infinite basic operations in finite time. This is a possibility that has recently been proposed based on new physical theories. We argue that, assuming that such a possibility is realized, arithmetic will be determinate, meaning that the truth or falsity of each arithmetic sentence will be explainable.

کلیدواژه‌ها [English]

  • Gödel
  • absolutely unsolvable problems
  • supertask computer
  • infinite Turing machine
  • infinite rule
پاتنم، هیلری (1401). هیلری پاتنم: منتخبِ مقاله‌های فلسفی، تدوین کاوه لاجوردی، تهران: فرهنگ نشر نو.
منیری، مرتضی (1401). «آیا حساب متعیّن است؟»، فرهنگ و اندیشۀ ریاضی، دورۀ 31، شمارۀ 2، شمارۀ پیاپی 71، صص. 97-150.
Davis, Martin (1973). “Hilbert's Tenth Problem is Unsolvable”, American Mathematical Monthly, 80, pp. 233–269.
Feferman, Solomon (2006). “Are There Absolutely Unsolvable Problems? Gödel's Dichotomy”, Philosophia Mathematica, 14 (2), pp. 134-152.
Gödel, Kurt (1995). Collected Works, Volume 3: Unpublished Essays and Lectures, Edited by Solomon Feferman, et al. Oxford University Press.
Hamkins, J., & Lewis, A. (2000). “Infinite time Turing machines”, The Journal of Symbolic Logic, 65 (2), pp. 567-604. 
Hamkins, J. (2002). “Infinite Time Turing Machines”, In: Minds and Machines12, pp. 521–539.
Penrose, Roger (1996). Shadows of the Mind: A Search for the Missing Science of Consciousness, Oxford University Press.
Putnam, Hilary (2006). “After Gödel”, Logic Journal of the IGPL, 14 (5), pp. 745–754.
Manchak, J. B. & Roberts, Bryan W. (2022). “Supertasks”, In: The Stanford Encyclopedia of Philosophy, Edward N. Zalta (ed.).
Shagrir, Oron (2004). “Super-tasks, accelerating Turing machines and uncomputability”, Theoretical Computer Science, Vol. 317, 1–3, pp. 105-114.
Warren, Jared & Waxman, Daniel (2020a). “Supertasks and arithmetical truth”, Philosophical Studies, 177, pp. 1275–1282.
Warren, J., & Waxman, D. (2020b). “A metasemantic challenge for mathematical determinacy”, Synthese, 197 (2), pp. 477-495.
Warren, J. (2021). “Infinite Reasoning”, Philosophy and Phenomenological Research, 103 (2), pp. 385-407.