نوع مقاله : مروری

نویسندگان

1 گروه ریاضی، دانشگاه شهیدبهشتی ، تهران، ایران

2 عضو هیئت علمی، گروه ریاضی، دانشگاه شهید بهشتی

10.30465/lsj.2021.36251.1358

چکیده

نظریة مدل محدود را می‌توان بخشی از نظریة مدل دانست که هدف آن بررسی مفاهیم و نتایج نظریة مدل در یک زبان شامل یک رابطة ترتیبی است در حالتی که سورهای مورد بحث همگی از نوع محدود هستند. از نظریة مدل محدود می‌توان برای مطالعة مسائل مربوط به نظریة حساب محدود استفاده کرد. حساب محدود را می‌توان زیرنظریه‌ای از حساب مرتبة اول پئانو در زبانی گسترش‌یافته دانست. خود حساب محدود، کاربردهای فراوانی در نظریة پیچیدگی محاسبات دارد. با تعریف و مطالعة مفاهیم پایه‌ای نظریة مدل در حالت محدود مانند حذف سور محدود و مدل‌ کامل محدود، نتایج جالبی در نظریة مدل با کاربردهایی در نظریۀ پیچیدگی محاسبه و حساب محدود به دست آمده است. در این مقاله، ضمن مروری بر نتایج موجود در این زمینه، برخی مفاهیم و نتایج جدید را در این راستا ارائه می‌کنیم و ارتباط‌های آن‌ها را با برخی مسائل بنیادی در نظریة پیچیدگی محاسبه مطالعه می‌کنیم.

کلیدواژه‌ها

عنوان مقاله [English]

Bounded Model Theory and its Applications to Bounded Arithmetic

نویسندگان [English]

  • Abolfazl Alam 1
  • Morteza Moniri 2

1 Department of Mathematics, Shahid Beheshti University, Tehran, Iran

2 Department of Mathematics, Shahid Beheshti University, Tehran, Iran

چکیده [English]

Bounded model theory can be considered as part of first-order model theory, which its aim is to study model-theoretic notions in a language consisting of an order relation where all quantifiers are restricted to the bounded ones. One can apply bounded model theory to study some problems in bounded arithmetic. Bounded arithmetic can be considered as a sub-theory of first-order Peano arithmetic in an extended language. Bounded arithmetic has some applications in computational complexity theory. There are already some related bounded model-theoretic concepts like bounded quantifier elimination and bounded model completeness which has been applied to bounded arithmetic and complexity theory. In this article, we review some known results and prove some new ones in bounded model theory and use them to obtain certain results in bounded arithmetic and complexity theory. In particular, we define the notion of bounded model companion and study its relations to some fundamental problems in complexity theory.

کلیدواژه‌ها [English]

  • Bounded Arithmetic
  • Bounded formula
  • Bounded model complete
  • Bounded model companion
  • Bounded quantifier elimination
منیری، مرتضی (1384). «نظریة مرتبة اول پئانو و زیرنظریه‌های آن همراه باچند مسئلة مرتبط در نظریة پیچیدگی»، فرهنگ و اندیشة ریاضی، ۲۴، صص. ۳۳-۵۵.
Buss, S. R‎. (1986).‎‎Bounded Arithmetic, Napoli: Bibliopolis.
Buss,S. R‎. (1995). Relating the Bounded Arithmetic and ‎‎Polynomial Time Hierarchy. Annals of Pure and Applied Logic, 75, ‎pp.67-77‎.
‎‎Buss,S. R. (1998).Handbook of Proof Theory‎.‎Amsterdam: Elsevier.
Chang, C. C., Keisler, J. (1990).Model theory, ‎‎Amsterdam: North-Holland.
‎‎Cook, S. A. (1975). Feasibly Constructive Proofs and the Propositional Calculus(preliminary version). Seventh Annual ACM Symposium on Theory of ‎‎Computing,83-97.
Cook,S. A. (2009). Review of Three‎‎Papers Relating the Collapse of the Polynomial Hierarchy to the Collapse of Bounded Arithmetic‎.‎‎http://www.cs.toronto.edu/~sacook/.
Cook,S. A., Urquhart,A. (1993). Functional Interpretations‎‎ of Feasibly Constructive Arithmetic‎. Annals of Pure and Applied ‎‎Logic, 63, pp. 103-200.
‎‎Hajek, P.,Pudlak, P. (1993).Metamathematics of First-order Arithmetic. Berlin: Springer-Verlag.
Hodges, H. (1997). A Shorter Model Theory. Cambridge: Cambridge University Press.
Kaye, R. (1991).Models of Peano Arithmetic. Oxford: Oxford University Press.
Krajicek, J. (1995). Bounded Arithmetic, Propositional Logic,and Complexity Theory. Cambridge: Cambridge University Press‎.
Krajicek, J. ,Pudlak, P., ‎‎Takeuti, G. (1991).Bounded Arithmetic and the Polynomial Hierarchy. Annals of Pure and Applied Logic, 52, pp. 143-153.
Marker, D. (2002). Model Theory: An Introduction. New York: Springer-Verlag.
Moniri, M‎. (2006). An independence result for intuitionistic bounded arithmetic. Journal of Logic and Computation, 16, pp. 199-204.
Moniri, M‎. (2007). Preservation Theorems for Bounded Formulas. Archive for Mathematical Logic, 46, pp. 9-14.
Parikh, R. J. (1971). Existence and feasibility in arithmetic, Journal of Symbolic Logic, 36, pp. 494–508.
Parikh, R. J. (1973). Some results on the lengths of proofs, Transactions of the American Mathematical Society, 177, pp. 29–36.
‎‎Zambella, D. (1996). Notes on Polynomially Bounded Arithmetic, Journal of Symbolic Logic, 61, pp. 942-966.